The effect of hydrostatic pressure on T_N was obtained from a vibrating-coil magnetometer equipped with a special pressure vessel made of a diamagnetic beryllium-copper alloy and using helium as the pressure-transmitting medium:

$$dT_N/dP = -0.23^0 K/kbar$$
 up to 6 kbar. (2)

The Néel temperature was assumed to be given by the sharp increase with decreasing temperature in χ_m due to the appearance of parasitic ferromagnetism.

Phenomenological Phase Diagram

Localized d electrons are described by crystal-field theory. For a single electron outside closed-shell cores, the zero-order potential is spherical. This leads to wave functions of the form

$$f_{\ell m} = R_{\ell}(r) Y_{\ell}^{m}(\theta, \phi)$$
 (3)

where $\ell=2$ for outer d electrons. The spherical potential is perturbed by the cubic crystalline fields and by covalent mixing. Octahedral-site symmetry splits the atomic orbitals into the twofold-degenerate e_g orbitals directed toward near-neighbor anions and the more stable, threefold-degenerate t_{2g} orbitals directed toward near-neighbor A cations. After covalent mixing with the near-neighbor s and p orbitals, the crystal-field orbitals of e_g and t_{2g} symmetry are

$$\psi_{e} = N_{\sigma} (f_{e} + \lambda_{\sigma} \phi_{\sigma}), \quad \psi_{t} = N_{\pi} (f_{t} + \lambda_{\pi} \phi_{\pi} + \lambda_{A} \phi_{A})$$
 (4)

where N_{σ} , N_{π} are normalization constants, λ_{σ} , λ_{π} , λ_{A} are covalent-mixing parameters, and ϕ_{σ} , ϕ_{π} , ϕ_{A} are the symmetrized anionic sp_{σ} , anionic p_{π}^{2} and A-cationic sp_{σ}^{3} orbitals. (Covalent mixing with s, p orbitals on next-near-neighbor B cations would add a smaller fourth term to ψ_{t} .) Although the crystalline fields partially quench the orbital angular momentum, spin-orbit coupling splits the energy E_{t} of the states of t_{2g} symmetry into a more stable, four-fold degenerate (including spin) level $E_{3/2}$ and a less stable, two-fold degenerate level $E_{1/2}$, where

$$E_{1/2} - E_{3/2} = 2k_c^{\lambda}$$
 (5)

Here λ is the atomic parameter entering the spin-orbit-coupling energy $\lambda \stackrel{\cdot}{\succeq} \stackrel{\cdot}{\lesssim}$, and k_c is a large fraction (~0.9) reflecting the increase in R(r) due to covalent mixing.

In the case of two, localized outer d electrons, intra-atomic exchange splits the states of different spin, α and β , and the ground state corresponds to the fivefold degenerate energy E_2 for states with total angular momentum J=L+S=2, where

$$E_1 - E_2 = 3k_c^{\lambda}$$
 (6)

Interactions between near-neighbor B cations arise via the matrix elements

$$b_{ij} = (\psi_i, h\psi_j) \approx \varepsilon(\psi_i, \psi_j) \sim \varepsilon N_{\pi}^2 \lambda_{\pi}^2$$
 (7)

where h is the change in the localized-electron potential energy of the B cation at $\underset{i}{\mathbb{R}}_{i}$ that is due to the presence of a B cation at $\underset{i}{\mathbb{R}}_{j}$. These matrix elements represent a gain in energy due to an electron transfer from $\underset{i}{\mathbb{R}}_{i}$ to $\underset{i}{\mathbb{R}}_{j}$. However, such an electron transfer costs an electrostatic energy

$$U = (e^2/r_{12}) \exp(-\xi r_{12})$$
 (8)

where the screening parameter $\xi = \xi(b)$ increases with increasing b_{ij} . Second-order perturbation theory gives the superexchange interaction energy $\lceil 6, 7 \rceil$

$$\mathcal{K}_{ex} = -\sum_{ij} \{ J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \mathbf{S}_i \times \mathbf{S}_j \}$$
 (9)

where the dominant contribution to the isotropic exchange parameter is

$$J_{ij} \approx -2b_{ij}^2/U . {10}$$

The minus sign enters because electron transfer conserves the total angular momentum $j=\ell+s$: With half-filled J=2 states, the Pauli exclusion principle excludes electron transfer between states of parallel spin, and antiferromagnetic coupling is stabilized. Further, the antiferromagnetic ordering temperature is

$$T_{N} \sim J_{ij} \sim \lambda_{\pi}^{4}/U \tag{11}$$

where U decreases with increasing λ_{π} . The existence of an anisotropic exchange parameter [7]

$$D_{ij} \approx (\Delta g/g)J_{ij}$$
 (12)

introduces parasitic ferromagnetism, but does not alter Equation (11). Here Δg is the variation of the spectroscopic splitting factor from g=2. Finally, spin-orbit coupling and collinear spins below T_N order the occupied J=2 orbitals so as to give a cooperative distortion of a cubic crystal to tetragonal (c/a < 1) symmetry $\lceil 8 \rceil$.